
Pete Devlin Office of Energy Efficiency and Renewable Energy U. S. Department of Energy

2002 Merit Review and Peer Evaluation
DOE Fuel Cells for Transportation R & D

DOE Transportation Fuel Cell Fuel Strategy

Hydrogen can be stored and supplied directly to the fuel cell: Storage and Infrastructure Issues

Hydrogen can be derived on-board from fuels such as ethanol, methanol, natural gas, gasoline or FT fuels: Durability and Start-up Issues

Hydrogen Infrastructure and Storage

Off-Board Reforming

- Purification

- Compression

- Dispensing

Renewables

- Wind

- Biomass

Pressurized Tanks

- Carbon Composites

Storage Materials

- Hydrides

- Carbon Nanotubes

Targets and Status

On-Board Hydrogen Storage Subsystem

Characteristic	Units	Target	2001 status Physical Storage	2001 status Chemical Storage
Storage capacity	Wt%	6	6	~3
Energy density	Wh/L	1100	800	1300
Cost	\$/kWh	5	50	18
Operating temperature	°C	-40 to +50	-40 to +50	+20 to +50

Targets and Status

Off-Board Hydrogen Production and Dispensing

Characteristic	Units	Current Status	2005	2010
Cost	\$/GJ H2	19.2	17.2	16.2
WTW GHGs	g/km	90	82	75
Primary Energy Efficiency	% (LHV)	62	68	75

On-board Fuel-Flexible Fuel Processor: Fuels Strategy

- R&D on APB fuels is the high technical risk. But, if successful, may enable early commercialization of light-duty FCVs.
- Testing of neat methanol and ethanol
 - Vehicle testing (experience/data)
 - →lowers risk for production, warranty, safety issues
- On-board fuel processing of natural gas provides synergism with stationary and offboard fuel processing applications.

	DOE Fuel Processing Programs ¹		Vehicle Testing ²	
	R&D	Testing		
Advanced Petroleum Based Fuel	÷	÷		
Methanol		骨	수	
Ethanol		骨		
Natural Gas		骨		

¹ Includes testing of blends

² California Fuel Cell Project